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Supplemental figures: 

1. Fig. S1: Oscillations of the zero energy modes splitting in longer effective topological wires with 5, 6,  

    7 and 9-ON MNP array. 

2. Fig. S2: The calculated dispersion, probability and charge densities for MBS in 3-ON MNP array with   

    the inclusion of spin-orbit coupling due to bulk inversion asymmetry. 

3. Fig. S3: The calculated probability and charge densities for MBS coming from the subbands in 3-ON  

    MNP array. 
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Extensively studied platforms for Majorana bound states (MBS), which rely on proximity-induced 

superconductivity in epitaxially-defined one-dimensional (1D) semiconductor nanowires (NWs) and 

uniform applied magnetic field, B [1,2], share some similar properties with our proposal in the main text 

where reconfigurable effective topological wires are implemented through the interplay between 

superconducting and magnetic proximity effects in a two dimensional electron gas (2DEG). These 

similarities can be already seen from the well-known topological condition for the gap closing in an 

infinitely long proximitized NWs, EZeeman = (μ2 + ∆2)1/2 [1,2] as well as from the MBS formation at the 

ends of physical or effective wires, respectively. Tunable magnetic textures implemented in an array of 

magnetic nanopillars (MNPs) yield inhomogeneous effective B-fields and a resulting approximate 

generalized topological condition [Eqs. (2) and (3), main text]. For a homogeneous B-field, this 

generalized topological condition in a 2DEG reduces to the previous topological condition for 1D NWs.  

However, given that we study magnetic textures with resulting fringing fields that are often ignored, 

but play a crucial role in forming effective topological wires in the neighboring 2DEG, we use this 

Supplemental Material (SM) to elucidate possible differences in the MBS formation and control, as 

compared to the well-known 1D NW counterparts. We recall that in our platform, in addition to 

generating Zeeman splitting and particle confinement, these fringing fields overcome the need for 

complex network of physical wires to implement braiding, as well as result in synthetic spin-orbit 

coupling (SOC) in the 2DEG. Within this scheme, the MBS manipulation relies on commercially 

available spin transfer torque (STT)-controlled magnetic textures whereby magnetization configuration in 

each MNP can be electrically controlled (see Fig. 1, main text). 

In this SM, Fig. S1 shows the low-energy spectrum as function of the chemical potential for larger 

size system (5, 6, 7, 9 MNPs), where the oscillations of the zero energy states splitting are strongly 

suppressed with the increased number of MNPs. Given that the fringing fields already yield sufficient 

synthetic SOC, in Fig. S2 we also explore the influence of the Dresselhaus SOC, inherent to the III-V 

semiconductors [3-5]. Such intrinsic SOC has only a very small influence on the MBS formation, which 

in our case is dominated by synthetic SOC. Fig. S3 shows the MBS with multiple subbands. The 

calculated results are all obtained by accurate micromagnetic modeling of the fringing fields using a 

finite-element method in COMSOL [6] as an input to the Bogoliubov-de Gennes (BdG) equations, as 

described in the main text. Specifically, BdG are discretized using a forth order finite-difference method 

and verified for the convergence of their solution by refining the computational grid. Specifically, the 

discretized lattice spacing units are taken as 20 nm for both x and y direction in our calculations, giving 

51×21, 71×21, 81×21, 91×21, 111×21, and 171×21 grid sizes for 3, 5, 6, 7, 9, and 15 MNP array, 

respectively. The calculations based on finer grids with the lattice spacing unit of 10 nm show the results 

are convergent. 
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Fig. S1 (a) – (d) Low-energy spectrum as a function of the chemical potential, μ, for a system in Fig. 1, 

but with 5, 6, 7 and 9-ON MNP arrays, respectively. The parameters are taken from Fig. 2. 

 



 

Fig. S2 (a) Low-energy spectrum as a function of the chemical potential, μ, for a system in Fig.1 with 3-

ON MNP array with the inclusion of spin-orbit coupling from the bulk inversion asymmetry, written for 

the (110) plane as  
𝛾

ℏ
𝑝𝑥𝜎𝑦 , where  γ = 40 meVÅ is used [3-5]. (b) The density of states from (a). (c) and 

(d) The probability density and charge density for the lowest energy states with μ = 0. The black lines in 

(c) indicate the contours with the values in the color bars, and in (d) the zero-contour values. Dashed lines 

in (c) and (d) denote the MNP array. The parameters are taken from Fig. 2. 

  



 

Fig. S3 (a) Low-energy spectrum as a function of the chemical potential, μ, for a system in Fig.1 with 3-

ON MNP array. (b) The density of states from (a). (c) and (d) The probability density and charge density 

for the lowest energy states with μ = 0.6 meV. The black lines in (c) and (d) show the contours with the 

values in the color bars. Dashed lines in (c) and (d) denote the MNP array. The parameters are taken from 

Fig. 2. 


